

RadioRoSo

Experiment presentation

RadioRoSo Project Facts

- Running under the umbrella of EU FP7 project ECHORD++
 - ECHORD++ mission is to bring results from lab to market
- ECHORD++ experiments:
 - Impact oriented use cases with industrial user participation
- RadioRoSo is one of 16 experiments
 - Starting 1st September 2016
 - Duration 18 months (to end March 2018)

RadioRoSo Experiment Goal

- Demonstrate robust autonomous or semiautonomous sorting of nuclear waste.
- Aiming at reduction of cost of nuclear plant decommissioning operations:
 - By improving process throughput.
- Improve health and safety of workers in such operations.
 - Typically the task is currently performed using manually operated master-slave robots and is tedious and error prone.

Experimental Testbed

- Two independent industrial 6-DoF manipulators (Motoman MA1400) on a rotating base
- ROS based control software.
- Temporary pinch-like grippers to be replaced by RadioRoso grippers

 Drivers for all hardware and basic software for collisionaware motion planning, calibration and control available from previous projects

First Year Application Scenario Sorting of Magnox Fuel Element Debris

Fuel Element Debris (FED) from Magnox canisters broken down with a special machine

- uranium pellets immediately separated and reprocessed
- manganese/aluminum canister debris encapsulated in concrete and stored, or dissolved in acid
- springs (very radioactive) cannot be dissolve in acid and cannot be encapsulated in concrete
- \rightarrow picked up and usually carefully stored in led pots
- Large decommissioning market
- 11 Magnox power stations in UK (26 units or reactors), 1 in Italy, 1 in Japan at Tokai

https://magnoxsites.com

First Year Application Scenario

Sorting of Magnox Fuel Element Debris

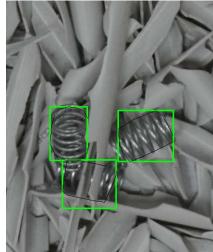
Environment:

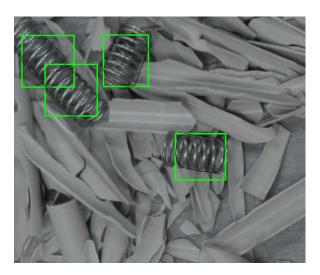
- Debris is put in a tray containing both low-activity waste (swarf) and high-activity springs (hot-spots).
- Robots, sensors and grippers should be resistant to radiation.

Robotic Skills

- Detects springs using vision (maybe partially occluded).
- Robot grasps springs and puts them away.
- If no spring visible radioactivity sensor used to detect remaining springs covered by swarf.
- Steer the contents of the tray and repeat the process until all springs have been recovered.

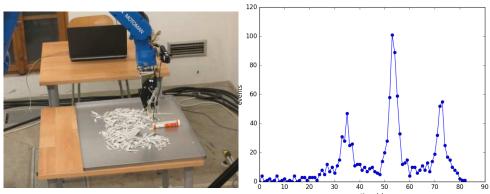
Targets


Improve sorting speed compared to humans

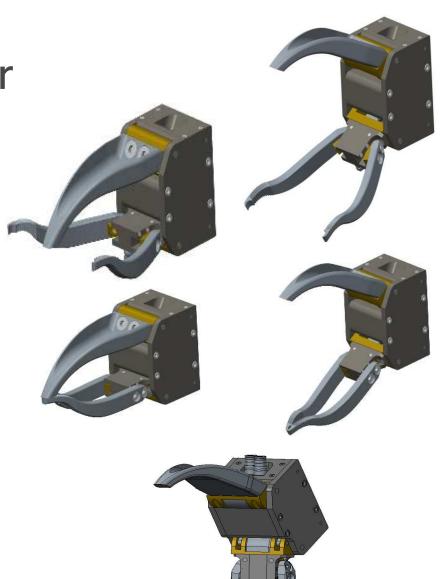

Current Results

Vision-based localization and grasping

- Using overhead SLR camera.
- Highly accurate detection of springs (accuracy ~ 98%)
- Processing time < 2sec.
- $^\circ$ Accurate orientation estimation (MSE ~ 10°)
- Grasping success ~ 80%



Current Results Radioactivity sensor-based localization of hot spots



- Springs significantly more radioactive than the rest of the swarf and environment
- Detection of presence on the tray with a sensor developed by the partner SURO.
- Sensor placed on robot arm that scans the surface.
- Proof of concept with 3 detectors (ModuPix, TimePix, plastic scintillator)

Current Results Radioactivity proof gripper

- Two independent hydraulic actuated axes
- Separate power unit
- Passive finger compliance
- Different grasping configurations for different tasks and object dimensions.
- The paired fingers can form 2- and 3point closures with the single finger
- Wrapping of soft items for power grasp
- Design robust and modular following nuclear standards
- Different fingers can be mounted

Final Application Scenario

Sorting of Mixed Waste

- Processing of mixed nuclear waste with semiautonomous robotic sorting cells
 - Waste comprises low and medium radioactive material
 - Presence of material with different size (small to large)
 - Presence of compressible material (always low radioactive and soft items such as garments, gloves, wires)
- Challenges
 - Properties of objects unknown e.g. geometry, material.
 - Significant clutter.
 - Harsh environment.
- Targets
 - Improve sorting speed compared to fully manual processing

Final Application Scenario Sorting of Mixed Waste

Envisaged Results

- Demonstration of grasping of previously unseen objects from a heap.
- Demonstration of grasping of objects of different size and compressibility (e.g. garments).
- Evaluation of radioactivity resistance of gripper.
- Use of tactile cues (tactile sensors embed on grippers) to assess grasp stability.
- Demonstrate dual-arm manipulation capabilities for picking long objects (e.g. ropes)

More Info

- Project web-page: http://radioroso.ciirc.cvut.cz/
- Project videos: Youtube channel.
- Contact:
 - Project coordinator:
 - Sotiris Malassiotis (malasiot@iti.gr)

Consortium members

CERTH CENTRE FOR RESEARCH & TECHNOLOGY HELLAS Information Technologies Institute

> UNIVERSITÀ DEGLI STUDI DI GENOVA